ЦИФРОВАЯ
ПЛАТФОРМА
ПО РАЗРАБОТКЕ
И ПРИМЕНЕНИЮ
ЦИФРОВЫХ
ДВОЙНИКОВ
CML-Bench®
CML-Bench® – цифровая платформа по разработке и применению цифровых двойников (Digital Twins) и «умных» цифровых двойников (Smart Digital Twins) высокотехнологичных промышленных изделий/продуктов и технологических/производственных процессов их изготовления; система управления деятельностью в области системного цифрового инжиниринга (системного и модельно-ориентированного инжиниринга, математического, компьютерного и суперкомпьютерного моделирования, цифрового проектирования, компьютерного и суперкомпьютерного инжиниринга).
Цифровая платформа CML-Bench® – уникальная российская разработка, сфокусированная на обеспечении проектирования и производства в кратчайшие сроки глобально конкурентоспособной высокотехнологичной продукции в различных отраслях и на новых рынках.
Применение Цифровой платформы CML-Bench® на предприятиях российской промышленности позволяет автоматизировать процесс работы с инженерными вычислениями, существенно сокращает трудозатраты на администрирование инженерной деятельности и значительно увеличивает производительность совместной работы инженеров, что, в свою очередь, позволяет значительно повысить эффективность расчетного сопровождения процесса разработки, проведения многовариантной оптимизации продукции и обеспечить ее конкурентоспособность.
Уникальная российская разработка
60+
реализованных
проектов
для 10 высокотехнологичных отраслей промышленности
312+
тыс. проектных решений
представлено на платформе
за 8 лет эксплуатации
4+
млрд руб.
выручка в 2018–2022
РАЗРАБОТКА И РАЗВИТИЕ ПЛАТФОРМЫ
Разработка Цифровой платформы ведется с 2006 года под общим руководством А.И. Боровкова, проректора по цифровой трансформации Санкт-Петербургского политехнического университета Петра Великого (СПбПУ).
КОМАНДА РАЗВИТИЯ CML-BENCH®
Алексей Боровков
руководитель стратегического развития
Татьяна Калинина
заместитель руководителя стратегического развития
Олег Михайлов
руководитель направления разработки
Вадим Бураков
главный архитектор цифровой платформы
Владислав Климкин
руководитель инженерных работ
Антон Алексашкин
руководитель направления дистрибьюции
Егор Александров
менеджер по работе с ключевыми клиентами и партнерами
Александр Михайлов
руководитель направления тестирования, валидации и верификации инженерного ПО
Михаил Корчков
руководитель направления авиастроения
Александр Себелев
руководитель направления двигателестроения
Петр Скопин
инженер-исследователь
КОМАНДА РАЗВИТИЯ CML-BENCH®
ЦИФРОВЫЕ
ДВОЙНИКИ
промышленных изделий
и технологических процессов
Проекты по разработке и применению цифровых двойников высокотехнологичных промышленных изделий на базе Цифровой платформы CML-Bench® реализуются в соответствии с национальным стандартом Российской Федерации – ГОСТ Р 57700.37–2021 «Компьютерные модели и моделирование. ЦИФРОВЫЕ ДВОЙНИКИ ИЗДЕЛИЙ. Общие положения».
ГОСТ Р 57700.37–2021 распространяется на изделия машиностроения, однако на его основе могут разрабатываться стандарты, устанавливающие требования к цифровым двойникам изделий различных отраслей промышленности с учетом их специфики.
На Цифровой платформе CML-Bench® реализованы десятки прорывных проектов с разработкой цифровых двойников изделий для высокотехнологичных отраслей: двигателестроения, судостроения, автомобилестроения, атомной энергетики, медицины и других.
Стандарт разработан специалистами Центра НТИ СПбПУ «Новые производственные технологии» и ФГУП «РФЯЦ-ВНИИЭФ» в соответствии с Программой национальной стандартизации на 2020 год и Программой национальной стандартизации на 2021 год. Утвержден приказом № 979-ст Росстандарта 16 сентября 2021 года. Введен в действие с 1 января 2022 года.
3.24 цифровой двойник изделия; ЦД: Система, состоящая из цифровой модели изделия и двусторонних информационных связей с изделием (при наличии изделия) и (или) его составными частями.
Из ГОСТ Р 57700.37–2021:
Примечания
  1. Цифровой двойник разрабатывается и применяется на всех стадиях жизненного цикла изделия
  2. При создании и применении цифрового двойника изделия участникам процессов жизненного цикла (по ГОСТ Р 56135) рекомендуется применять программно-технологическую платформу цифровых двойников.
На базе Цифровой платформы CML-Bench®
разрабатываются основные компоненты
цифровых двойников изделий, в их числе:
  • архитектура цифрового двойника на основе подходов системного инжиниринга и модельно-ориентированного системного инжиниринга с учетом реальных материалов, внешних воздействий, физико-механических и технологических процессов, эксплуатационных режимов и стадий жизненного цикла;
  • многоуровневая матрица требований, целевых показателей и ресурсных ограничений (временных, финансовых, технологических, производственных, экологических, нормативных и др.);
  • математические и компьютерные модели с высоким уровнем адекватности;
  • верификация и валидация ПО и моделей;
  • виртуальные испытания, специализированные виртуальные стенды и виртуальные полигоны;
  • автоматизация инженерных, организационных и презентационных процессов и др.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
АРХИТЕКТУРА
Технология разработки цифровых двойников и Цифровая платформа CML-Bench® выступают драйверами и интеграторами применения системы сквозных цифровых технологий класса Digital Engineering – Smart Design & Engineering, в их числе:
  • компьютерный и суперкомпьютерный инжиниринг (Computer-Aided Engineering, CAE; High Performance Computing, HPC–CAE);
  • виртуальные испытания, виртуальные стенды и виртуальные полигоны;
  • большие данные, искусственный интеллект, блокчейн и др.
  • системный инжиниринг (System Engineering, SE) и модельно-ориентированный системный инжиниринг (Model Based System Engineering, MBSE);
  • цифровое проектирование (Computer-Aided Design, CAD);
  • математическое и компьютерное моделирование (Finite Element Analysis, Modelling, Simulation, Simulation & Analysis, S&A);
  • верификация и валидация (Verification & Validation, V&V);
  • цифровой инжиниринг (Digital Engineering, DE);
~312
тыс. виртуальных испытаний
за 8 лет эксплуатации
~100
виртуальных испытаний
в сутки
Цифровая платформа CML-Bench® состоит из набора сервисов, написанных на Java 11 и Kotlin. Адаптирована под актуальные версии ОС Astra Linux Special Edition. В качестве СУБД используется Postgres Pro Certified (сертифицированы ФСТЭК). В работе команды применяют лучшие технологии: для автоматизации развертывания используется Ansible и Jenkins, для сбора логов ошибок и показателей производительности – ELK, для онлайн-мониторинга метрик работы – Prometheus/Grafana.
~850
тыс.
строк кода
~51
тыс.
ядро-часов в сутки
СЕРВИСЫ
БАЗОВЫЕ ПРИКЛАДНЫЕ
Прикладные сервисы Цифровой платформы CML-Bench® реализуют следующие ключевые функции:
  • отображение матрицы требований, целевых показателей и ресурсных ограничений;
  • отображение дерева эволюции расчетных вариантов;
  • управление цифровыми макетами;
  • управление расчетными моделями;
  • управление расчетными узлами;
  • интеграция c высокопроизводительными кластерами (HPC – High Performance Computing);
  • управление приоритизированной очередью задач;
  • сбор и анализ статистики по выполненным расчетным задачам;
  • формирование визуальной отчетности.
  • управление проектами и заданиями;
  • иерархическое представление данных проекта;
  • представление графика работ по проекту в виде диаграммы Ганта;
  • работа с документами/файлами разных форматов;
  • управление условиями нагружения (повторение одного и того же физического эксперимента, с разной логикой работы с целевыми показателями);
  • управление библиотекой требований к разрабатываемому продукту;
ФУНКЦИИ
МАТРИЦА ТРЕБОВАНИЙ
РАСЧЕТНЫЕ ЦЕПОЧКИ
Расчетные цепочки
Разработанные процессы сохраняются в виде шаблонов в библиотеке процессов с контролем версий и управлением доступом. Для выполнения расчетных цепочек, созданных конструктором процессов, на платформе реализован механизм, осуществляющий передачу управления и параметров, результатов и данных между разными составляющими расчетной цепочки.
Механизм расчетных цепочек позволяет автоматизировать процесс комплексного расчета, включающего использование нескольких видов инженерного программного обеспечения. С помощью этого механизма можно построить расчетный агрегат, в котором различные пакеты можно будет использовать последовательно (управление и данные передаются от одного пакета другому), условно (управление передается пакету при выполнении определенного условия), циклически (один и тот же пакет отрабатывает определенное количество раз) или параллельно (данные и управление из одного пакета передаются одно временно нескольким). При этом результаты расчетов будут переданы от одного компонента расчетного агрегата другому.
На Цифровой платформе CML Bench® реализован конструктор процессов для определения блоков решателей, входных и выходных данных, а также способа их организации в расчетный агрегат.
Многоуровневая матрица требований,
целевых показателей и ресурсных ограничений
Проектирование сложных высокотехнологичных продуктов с применением Цифровой платформы CML-Bench® подразумевает балансировку системы взаимосвязанных целевых показателей, при том что работа с тысячами показателей находится за гранью осознания и интуиции даже самых высококлассных инженеров. Функции управления матрицей требований предоставляют инженеру необходимую поддержку процесса согласования иерархических и взаимосвязанных показателей. Визуализация матрицы требований с цветовой индикацией степени соответствия показателей, полученных в результате цифровых (виртуальных) испытаний, требуемым интервалам значений создает возможность комплексного мониторинга и анализа влияния показателей или группы показателей друг на друга. В результате может быть получено несколько вариантов конструкции, различающихся экономикой, технологиями изготовления и материалами и открывающих возможность формирования гибкой стратегии вывода на рынок разрабатываемого высокотехнологичного изделия.
Требования к свойствам проектируемого изделия, зафиксированные в техническом задании на его разработку и изготовление, преобразуются в систему взаимосвязанных требований, целевых показателей и ресурсных ограничений. В отличие от начальных требований, которые приведены в техническом задании и, как правило, исчисляются единицами значений, производные целевые показатели могут исчисляться десятками тысяч. Их количество определяют степень детализации свойств проектируемого изделия и уровень контроля над обликом перспективного продукта.
ФУНКЦИИ
ДЕРЕВО ЭВОЛЮЦИИ РЕШЕНИЙ
УПРАВЛЕНИЕ ПРОЕКТАМИ
Управление инженерными проектами и задачами
В дополнение к этим функциям в настоящий
момент осуществляется разработка конструктора и механизма с полноценной поддержкой BPMN 2.0 (Business Process Model and Notation – нотация и модель бизнес-процессов).
На Цифровой платформе CML Bench® реализованы механизмы управления проектами: постановка задач, согласование, контроль выполнения, планирование и контроль ресурсов, связь между задачами и расчетами, учет затраченного времени.
Дерево эволюции решений («цифровой след» проекта)
При наведении на узел дерева платформа визуализирует дополнительную информацию о результатах расчета.
Дерево эволюции решений предназначено для анализа хронологии и перспективности направления разработки с отслеживанием изменения ключевых показателей. Дерево эволюции представляет собой граф, каждый узел которого обозначен цветом в зависимости от принятых инженером решений по направлению развития работ над изделием, при этом граф поделен на сектора, соответствующие временным интервалам проведения виртуальных испытаний, в результате чего формируется интерактивная карта проектирования изделия.
Дерево эволюции решений позволяет наглядно увидеть хронологию принятия решений, тупиковые и альтернативные ветки проектирования и цифровых испытаний, что может быть использовано для обоснования изменений направления разработки и учета полученного опыта в рамках смежных проектов.
ИНФОРМАЦИОННАЯ
БЕЗОПАСНОСТЬ
Реализованы следующие меры информационной безопасности:
  • УПД.4 Разделение полномочий (ролей) пользователей, администраторов и лиц, обеспечивающих функционирование информационной системы.
  • УПД.6 Ограничение числа неуспешных попыток входа в систему.
  • УПД.9 Ограничение числа параллельных сеансов доступа для каждой учетной записи пользователя информационной системы.
  • УПД.10 Блокирование сеанса доступа в информационную систему после установленного времени бездействия (неактивности) пользователя или по его запросу.
  • УПД.11 Разрешение (запрет) действий пользователей, разрешенных до идентификации и аутентификации.
  • РСБ.1 Определение событий безопасности, подлежащих регистрации, и сроков их хранения.
  • РСБ.2 Определение состава и содержания информации о событиях безопасности, подлежащих регистрации.
  • РСБ.3 Сбор, запись и хранение информации о событиях безопасности в течение установленного времени хранения.
  • РСБ.4 Реагирование на сбои при регистрации событий безопасности (сигнализация).
  • ИАФ.1 Идентификация и аутентификация пользователей, являющихся работниками оператора.
  • ИАФ.3 Управление идентификаторами, в том числе создание, присвоение, уничтожение идентификаторов.
  • ИАФ.4 Управление средствами аутентификации, в том числе хранение, выдача, инициализация, блокирование средств аутентификации и принятие мер в случае утраты и (или) компрометации средств аутентификации.
  • ИАФ.5 Защита обратной связи при вводе аутентификационной информации.
  • ИАФ.6 Идентификация и аутентификация пользователей, не являющихся работниками оператора (внешних пользователей).
  • УПД.1 Управление (заведение, активация, блокирование и уничтожение) учетными записями пользователей, в том числе внешних пользователей.
  • УПД.2 Реализация необходимых методов (дискреционный, мандатный, ролевой или иной метод), типов (чтение, запись, выполнение или иной тип) и правил разграничения доступа.
КАСТОМИЗАЦИЯ
Среди основных показателей качества ПО при проектировании сервисов CML-Bench® особое внимание уделяется сопровождаемости (maintainability). Этот показатель позволяет определить потенциальную сложность внесения изменений в дизайн программных компонентов. Для максимизации значения этого показателя выбирают типовые решения и шаблоны проектирования, минимизирующие трудоемкость доработки ПО. Приоритизация показателя сопровождаемости делает платформу CML-Bench® максимально открытой для перспективного развития.
В качестве примера кастомизации, связанной с модификацией сервисов, можно привести успешно завершенный проект для ООО «Центротех-Инжиниринг» топливного дивизиона ТВЭЛ госкорпорации «Росатом». В рамках проекта была достигнута совместимость с сертифицированной операционной системой со встроенными верифицированными средствами защиты информации Astra Linux Special Edition, которая представляет собой отказоустойчивую платформу для защищенных IT-инфраструктур любого масштаба и работы с данными любой степени конфиденциальности. Кроме того, программный слой CML-Bench®, отвечающий за доступ к данным цифровой платформы, был модифицирован с целью адаптации к сертифицированной версии промышленной системы управления базами данных для высоконагруженных систем Postgres PRO Enterprise Certified – российской системы управления базами данных, содержащей встроенные средства защиты от несанкционированного доступа к информации, встроенный контроль целостности исполняемых файлов и другие значимые с точки зрения безопасности функции. Помимо этого, сервисы безопасности были модифицированы с целью соответствия внутренней политике информационной безопасности ООО «Центротех-Инжиниринг».
Типовая конфигурация CML-Bench® удовлетворяет основным потребностям предприятий в части SPDM. Процесс кастомизации направлен на доработку платформы с целью учета специфики бизнес-процессов предприятий, в рамках которых могут быть разработаны новые сервисы, расширяющие функциональность, или модифицированы существующие для учета особенностей конкретного предприятия.
История создания и развития
Цифровой платформы CML-Bench®
2006
2006
Начало работ по созданию платформы
2022
2022
Начало работ по сертификации платформы по 6 уровню доверия ФСТЭК и соответствия требованиям к ГИС 3 класса (возможность обработки коммерческой тайны и сведений ДСП). Испытательная лаборатория – АО Центр «Атомзащитаинформ».
07.2022
07.2022
Регистрация товарного знака (графического, словесного, комбинированного) Цифровой платформы CML-Bench® в Федеральной службе по интеллектуальной собственности (Роспатенте)
10.2022
10.2022
Миграция данных из Teamcenter
2023
2023
Разработка кастомизированных модулей для двигателестроения
2023
2023
Поставка лицензий платформы: АО «ОДК», ПАО «ОДК-Сатурн»,
ФГАОУ ВО ТюмГУ, ФГАОУ ВО СамГУ, ООО «Центротех-Инжиниринг», ИБРАЭ РАН…
2023
2023
Интеграция программного обеспечения российских вендоров: АО «Аскон», ООО «КванторФорм», ООО «Вычислительная механика», НТЦ «АПМ», ООО «Фидесис», ООО «Тесис»…
Новости
примеры проектов
На Цифровой платформе CML-Bench® реализованы десятки прорывных проектов с разработкой цифровых двойников изделий для высокотехнологичных отраслей
двигателестроение
судостроение и кораблестроение
автомобилестроение
авиастроение
ж/д транспорт
ракетная и космическая техника
нефтегазовое машиностроение
приборостроение
атомная энергетика
медицина
Двигателестроение
судостроение и кораблестроение
автомобилестроение
авиастроение
ж/д транспорт
ракетная и космическая техника
нефтегазовое машиностроение
приборостроение
атомная энергетика
медицина
Результаты интеллектуальной деятельности
алгоритм сотрудничества
Стандартизованный пилотный проект на базе Цифровой платформы CML-Bench®
Варианты приобретения Цифровой платформы CML-Bench®
ЛИЦЕНЗИИ + техническая поддержка
  • Годовые лицензии / бессрочные лицензии.
  • Техническая поддержка (входит в годовую подписку или осуществляется отдельно к бессрочной лицензии).
1
Программно-аппаратный комплекс
  • Лицензии на инженерное ПО и CML-Bench®.
  • Оборудование с возможностью масштабирования.
  • Внедрение и кастомизация «под ключ».
2
Облачная платформа (SaaS/PaaS)
  • Подписка на доступ к CML-Bench® инженерному ПО и вычислительным ресурсам с оплатой по потреблению (в разработке).
3
Сопутствующие услуги
  • Внедрение платформы.
  • Кастомизация под процессы и интеграция платформы с внешними системами.
Коммерческие
Академические (в разработке)
Направления развития Цифровой платформы CML-Bench®
1
Развитие базового функционала платформы,
повышение пользовательской привлекательности
2
Возможность обработки
коммерческой и (в перспективе) государственной
тайны
3
Бесшовная интеграция с PLM-решениями заказчиков
4
Интеграция с отечественным CAx ПО
5
Гибкая адаптация функционала
под требования заказчиков
6
Взаимодействие с вузами
(академические лицензии)
контакты
Адрес: 195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29, АФ (Научно-исследовательский корпус «Технополис Политех»).

Дирекция Центра НТИ СПбПУ: оф. А.3.08.
Контактное лицо: Егор Александров
E-mail: alexandrov.e@compmechlab.ru